Name:
Class/Block: \qquad Date: \qquad

Exploration: Distributive Property (3)

Two algebraic expressions are equivalent if they always lead to the same result when you evaluate them, no matter what values you substitute for the variables.

Part I.

1. Launch the Distributive Properties (3) applet.

2. Drag the sliders below the first two columns to the right to Hide.

3. Click on the Substitute checkbox

4. Click on the Show sliders for variables and Show set models (dots) then:

- Set the a slider to $\mathbf{3}$
- Set the \boldsymbol{b} slider to $\mathbf{2}$
- Set the c slider to 4

Name:
Class/Block: ___ Date: ___
5. Look at the $3^{\text {rd }}$ column of the Distributive Property Applet.
a. Notice the expression $\mathbf{a}(\mathbf{b})+\mathbf{c}$ has values substituted to get $\mathbf{3 (2)}+4$

$$
a(b)+c
$$

c. Click on the Evaluate check box.

- 3. Evaluate

d. Review the solution to the expression.

How does the total relate to the number of dots shown?
6. Uncheck the Evaluate check box.

Uncheck the Show set models (dots) check box.
Set the sliders so $\mathbf{a}=\mathbf{5}, \mathbf{b}=\mathbf{3}$, and $\mathbf{c}=\mathbf{2}$ to make the expression $\mathbf{5 (3) + 2}$
a. Predict the number of dots that will be showing. Sketch what the representation will look like:

b. Check your predictions by:

Checking the Evaluate check box.
Checking the Show set models (dots) check box.
c. How does the number of dots relate to their location within or outside of the parentheses?

Name: \qquad
Class/Block: \square Date: \qquad
7. Uncheck the Evaluate check box.

Uncheck the Show set models (dots) check box.
Move the Slider below the $3^{\text {rd }}$ column to Hide and then move the Slider below the first column to Show.
Show \quad Hide \quad Show \longrightarrow Hide \quad Show \longrightarrow Hide

Set the sliders so $\mathbf{a}=\mathbf{5}, \mathbf{b}=\mathbf{3}$, and $\mathbf{c}=\mathbf{2}$ to make the expression $\mathbf{5 (3 + 2)}$

a. Predict the number of dots that will be showing. Sketch what the representation will look like:

b. Check your predictions by:

Checking the Evaluate check box.
Checking the Show set models (dots) check box.
c. How does the number of dots relate to their location within the parentheses?

Name:
Class/Block: \square Date: \qquad
BEFORE Moving On: Uncheck the Evaluate and the Show set models (dots) check box.
Part II. Predict the number of dots that will be showing. Sketch what the representation will look like:

Ex. $\#$	Set sliders to:	Write the expression: $\mathbf{a (b + c)}$	Predict the solution:	Sketch the number of dots:
1.	$\mathrm{a}=5$ $\mathrm{~b}=2$ $\mathrm{c}=5$			
2.	$\mathrm{a}=3$ $\mathrm{~b}=2$ $\mathrm{c}=1$			
3.	$\mathrm{a}=1$ $\mathrm{~b}=2$ $\mathrm{c}=2$			
4.	$\mathrm{a}=1$ $\mathrm{~b}=0$ $\mathrm{c}=4$			

When finished check your predictions by moving the slider to Show. Make sure to check the Evaluate check box and the Show set models (dots) check box. (When finished checking, move slider to Hide.)

Part III. Apply your current knowledge to the following problems

1. Predict whether the following two expressions are equivalent. $\mathbf{a}(\mathbf{b}+\mathbf{c})$ and $\mathbf{a}(\mathbf{b})+\mathbf{a}(\mathbf{c})$
a) Explain why or why not.
b) Use the example below to assist in your explanation.

Draw a visual representation for each of the expressions below:

$\mathbf{3 (2 + 4)}$	$\mathbf{3 (2)}+\mathbf{3 (4)}$

c) Are the expressions above equivalent?
d) Check your predictions by:

- Checking the Evaluate check box.
- Checking the Show set models (dots) check box.
- Move the two sliders below the first two columns to Show and check your prediction.

Name:
Class/Block: \square Date: \qquad
BEFORE Moving On: HIDE all the columns

Part IV. Predict whether the following expressions are equivalent.

Substitute the values provided into the expression. Evaluate each expression Fill in the chart provided. Do Not Use the Applet to Complete the Table.

Ex. $\#$	Set sliders to:	$\mathbf{a}(\mathrm{b}+\mathbf{c})$	$\mathbf{a}(\mathrm{b})+\mathbf{a}(\mathbf{c})$	$\mathbf{a}(\mathrm{b})+\mathbf{c}$
	$a=5$			
1.	$b=5$			
	$\mathrm{c}=5$			
	$\mathrm{a}=1$			
2.	$\mathrm{b}=1$			
	$\mathrm{a}=3$			
3.	$b=2$			
	$\mathrm{c}=4$			
	$a=0$			
4.	$\mathrm{b}=3$			
	$\mathrm{c}=4$			

When finished check your predictions by moving the sliders to Show.
Make sure to Check the Evaluate check box and the Show set models (dots) check box.
5. When, if ever, $\operatorname{did} a(b+c)=a(b)+c$ in the examples above? Why or why not?
6. List all the times $a(b+c)$ is equal to $a(b)+c$ if :

- the variable a could have a value of $\{0,1,2,3,4,5\}$
- the variable \mathbf{b} could have a value of $\{0,1,2,3,4,5\}$
- the variable \mathbf{c} could have a value of $\{0,1,2,3,4,5\}$

7. If these expressions have to be equal $\underline{\text { all }}$ of the time to be equivalent expressions, are $\mathbf{a}(\mathbf{b}+\mathbf{c})$ and $\mathbf{a}(\mathbf{b})+\mathbf{c}$ equivalent expressions?
