Name:		
Class/Block:	Date:	

Exploration: Distributive Property (3)

Two algebraic expressions are **equivalent** if they always lead to the same result when you evaluate them, no matter what values you substitute for the variables.

<u>Part I.</u>

1. Launch the *Distributive Properties (3)* applet.

Equivalent Expressions - Distri	Equivalent Expressions - Distributive Property (3)					
Explore the relationship between two different formulas, a(b+c) and a(b) + c. The expression a(b+c) is shown in both expanded and factored form. Sliders change the values of each variable and the set models. This version is the same as Equivalent Expressions - Distributive Property (2) except the sliders start with different values.						
		a (b	+ c)		a(b)+	c 🕄
🗆 1. Simplify						
🗆 2. Substitute						
🗆 3. Evaluate						
Show sliders for variables Show set models (dots)						
	Show •	Hide	Show •	— Hide	Show •	— Hide

2. Drag the sliders below the first two columns to the right to Hide.

3. Click on the *Substitute* checkbox

☑ 2.	Substitute	

- 4. Click on the *Show sliders for variables* and *Show set models (dots)* then:
 - Set the *a* slider to 3
 - Set the **b** slider to 2
 - Set the c slider to 4

V	☑ Show sliders for variables ☑ Show set models (dots)				
a = 3					
•	$\mathbf{b} = 2 \qquad \mathbf{c} = 4$				

This resource was collaboratively designed by OER in Mathematics Professional Development Project partners from Maine RSU#54 & RSU#11 and staff from Education Development Center, Inc. (EDC). This work is licensed under the Creative Commons Attribution-Non Commercial-Share Alike 3.0 License.

Name:		
Class/Block:	Date:	
5. Look a a.	at the 3^{rd} column of the <i>Distributive Property</i> Applet. Notice the expression $\mathbf{a}(\mathbf{b}) + \mathbf{c}$ has values substituted to get $3(2) + 4$	a(b)+c 3(2)+4
b.	Look at the rows of dots that represent the expression. How many rows of blue dots are present? How many rows of red dots are present? How many dots are present in all?	$\begin{array}{c} a \\ 1. \bullet \bullet \\ 2. \bullet \bullet \\ 3. \bullet \bullet \end{array}$
c.	Click on the <i>Evaluate</i> check box.	Show •
	🗹 3. Evaluate 🗕 🗕 🕨	

- d. Review the solution to the expression. How does the total relate to the number of dots shown?
- 6. Uncheck the *Evaluate* check box.
 Uncheck the *Show set models (dots)* check box.
 Set the sliders so a = 5, b = 3, and c = 2 to make the expression 5(3)+2
 - a. Predict the number of dots that will be showing. Sketch what the representation will look like:

- b. Check your predictions by: Checking the *Evaluate* check box. Checking the *Show set models (dots)* check box.
- c. How does the number of dots relate to their location within or outside of the parentheses?

ide

Name:		
Class/Block:	Date:	

Uncheck the *Evaluate* check box.
 Uncheck the *Show set models (dots)* check box.

Move the Slider below the 3rd column to *Hide* and then move the Slider below the first column to *Show*.

Set the sliders so a = 5, b = 3, and c = 2 to make the expression 5(3+2)

a. Predict the number of dots that will be showing. Sketch what the representation will look like:

- b. Check your predictions by: Checking the *Evaluate* check box. Checking the *Show set models (dots)* check box.
- c. How does the number of dots relate to their location within the parentheses?

Name:		
Class/Block:	Date:	

BEFORE Moving On: Uncheck the *Evaluate* and the *Show set models (dots)* check box.

Ex. #	Set sliders to:	Write the expression: a(b+c)	Predict the solution:	Sketch the number of dots:
1.	a = 5 b = 2 c = 5			
2.	a = 3 b = 2 c = 1			
3.	a = 1 b = 2 c = 2			
4.	a = 1 b = 0 c = 4			

Part II. Predict the number of dots that will be showing. Sketch what the representation will look like:

When finished check your predictions by moving the slider to *Show*. Make sure to **check** the *Evaluate* check box and the *Show set models (dots)* check box. (When finished checking, move slider to *Hide*.)

Part III. Apply your current knowledge to the following problems

- Predict whether the following two expressions are equivalent. a(b+c) and a(b) + a(c)
 a) Explain why or why not.
 - b) Use the example below to assist in your explanation.

Draw a visual representation for each of the expressions below:

3(2) + 3(4)		

c) Are the expressions above equivalent?

d) Check your predictions by:

- Checking the *Evaluate* check box.
- Checking the *Show set models (dots)* check box.
- Move the two sliders below the first two columns to *Show* and check your prediction.

Show • Hide Show • Hide

This resource was collaboratively designed by OER in Mathematics Professional Development Project partners from Maine RSU#54 & RSU#11 and staff from Education Development Center, Inc. (EDC). This work is licensed under the Creative Commons Attribution-Non Commercial-Share Alike 3.0 License.

Name:		
Class/Block:	Date:	

BEFORE Moving On: HIDE all the columns

Part IV. Predict whether the following expressions are equivalent.

Substitute the values provided into the expression. Evaluate each expression Fill in the chart provided. **Do Not Use the Applet to Complete the Table.**

Ex. #	Set sliders to:	a(b+c)	a(b)+a(c)	a(b)+c
1.	a = 5 b = 5 c = 5			
2.	a = 1 b = 1 c = 1			
3.	a = 3 b = 2 c = 4			
4.	a = 0 b = 3 c = 4			

When finished check your predictions by moving the sliders to *Show*. Make sure to **Check** the *Evaluate* check box and the *Show set models (dots)* check box.

- 5. When, if ever, did a(b+c) = a(b)+c in the examples above? Why or why not?
- 6. List all the times a(b+c) is equal to a(b)+c if :
 - the variable \mathbf{a} could have a value of $\{0, 1, 2, 3, 4, 5\}$
 - the variable **b** could have a value of {0, 1, 2, 3, 4, 5}
 - the variable \mathbf{c} could have a value of $\{0, 1, 2, 3, 4, 5\}$
- 7. If these expressions have to be equal <u>all</u> of the time to be equivalent expressions, are a(b+c) and a(b)+c equivalent expressions?

