Name: \qquad
Class/Block: \qquad Date: \qquad ,

Locating Fractions

Part I. The letters represent locations on the number line. For each question, choose the letter that best represents the given fraction.

1.	Select the letter that best represents the location of: $\frac{1}{4}$		Explain your reasoning:
2.	Select the letter that best represents the location of: $\frac{3}{4}$	$\square \mathrm{A}$ $\square \mathrm{B}$ $\square \mathrm{C}$ $\square \mathrm{D}$ $\square \mathrm{E}$	Explain your reasoning:
3.	Select the letter that best represents the location of: $\frac{3}{8}$	$\square \mathrm{A}$ $\square \mathrm{B}$ $\square \mathrm{C}$ $\square \mathrm{D}$ $\square \mathrm{E}$	Explain your reasoning:
4.	Select the letter that best represents the location of: $\frac{1}{2}$	$\begin{aligned} & \square \mathrm{A} \\ & \square \mathrm{~B} \\ & \square \mathrm{C} \\ & \square \mathrm{D} \\ & \square \mathrm{E} \end{aligned}$	Explain your reasoning:

Name: \qquad
Class/Block: \qquad Date: \qquad
Part II. The letters represent locations on the number line. For each question, choose the letter that best represents the given fraction.

5.	Select the letter that best represents the location of: $\frac{1}{5}$	$\square \mathrm{A}$ $\square \mathrm{B}$ $\square \mathrm{C}$ $\square \mathrm{D}$ $\square \mathrm{E}$	Explain your reasoning:
6.	Select the letter that best represents the location of: $\frac{1}{2}$	$\square \mathrm{A}$ $\square \mathrm{B}$ $\square \mathrm{C}$ $\square \mathrm{D}$ $\square \mathrm{E}$	Explain your reasoning:
7.	Select the letter that best represents the location of: $\frac{6}{5}$	$\square \mathrm{A}$ $\square \mathrm{B}$ $\square \mathrm{C}$ $\square \mathrm{D}$ $\square \mathrm{E}$	Explain your reasoning:
8.	Select the letter that best represents the location of: $\frac{3}{5}$	$\square \mathrm{A}$ $\square \mathrm{B}$ $\square \mathrm{C}$ $\square \mathrm{D}$ $\square \mathrm{E}$	Explain your reasoning:

