Name: \qquad
Class/Block: \qquad Date: \qquad

Exploration: Properties of Similar Triangles

In this exploration you will explore properties of similar triangles (same shape but different size).

- Corresponding angles of the two triangles have the same measure.
- Corresponding sides of the two triangles are proportional.

Directions:

Step 1: Launch the Similar Triangles: Side Angle Side applet http://maine.edc.org/file.php/1/tools/SimilarTrianglesSAS.html

Similar Triangles: Side Angle Side
\ulcorner directions
ratio of corresponding sides $=\frac{1}{1}$
a) Leave the "Ratio of Corresponding Sides" slider set to $\frac{1}{1}$
b) Observe the two triangles provided

Step 2: Set up the ratios provided. Fill in the lengths of the sides. Answer the associated questions. Look at the angles. Fill in the measure. Answer the associated question.

	Triangle 1	Triangle 2	Questions
1)	a) $\frac{A B}{D F}=$	$\frac{A C}{D E}=$	How do the two ratios compare?
	b) $m \angle C A B=$	$m \angle E D F=$	What do you notice about the two angles? ($\angle \mathrm{CAB}$ and $\angle \mathrm{EDF}$)

Click on the point B and move it. Fill in the new values.

2)	a)	$\frac{A B}{D F}=\ldots$	How do the two ratios compare?
	b) $m \angle C A B=$	$m \angle E D F=$	What do you notice about the two angles? $(\angle \mathrm{CAB}$ and $\angle \mathrm{EDF})$

Name: \qquad
Class/Block: \qquad Date: \qquad

Move the slider so the ratio of corresponding sides is equal to $\frac{1}{2}$. ratio of corresponding sides $=\frac{\mathbf{1}}{\mathbf{2}}$ Fill in the new values.
3)

$\frac{A B}{D F}=-$	$\frac{A C}{D E}=-$	How do the two ratios compare now?
b) $m \angle C A B=$	$m \angle E D F=$	What do you notice about the two angles? ($\angle \mathrm{CAB}$ and $\angle \mathrm{EDF}$)
c)		
$A C=$	$D E=$	What do you notice about the lengths of $\overline{A C}$ and $\overline{D E} ?$ How do they compare?

Move the slider so the ratio of corresponding sides is equal to $\frac{1}{3}$. ratio of corresponding sides $=\frac{\mathbf{1}}{\mathbf{3}}$
Fill in the new values.

4)	a) $\frac{A B}{D F}=$	$\frac{A C}{D E}=$	How do the two ratios compare now?
	b) $m \angle C A B=$	$m \angle E D F=$	What do you notice about the two angles? ($\angle \mathrm{CAB}$ and $\angle \mathrm{EDF}$)
	c) $A C=$	$D E=$	What do you notice about the lengths of $\overline{A C}$ and $\overline{D E}$? How do they compare?
5)	Look at the following pairs of triangles. Using your experience above, determine if these triangles are similar:		

