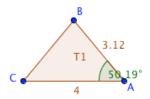
Name:		
Class/Block:	Date:	_

Exploration: Similar Triangles (LAL)

Part I. Introduction

In this exploration you will explore properties of similar triangles.

- □ Similar triangles have the same shape but can be different sizes.
- □ Corresponding angles of the two triangles have the same measure
- ☐ Corresponding sides of the two triangles are proportional


Directions:

Step 1: Launch the Similarity of Triangles (LAL) applet

http://teachers.henrico.k12.va.us/math/GeoGebraPages08/Similar Triangles02.html

- a) Leave the "Degree of similarity" slider set to 1
- b) Observe the two triangles provided

Degree of similarity h = 1

Step 2: Set up the ratios provided. Fill in the lengths of the sides. Answer the associated questions. Complete the angle provided. Fill in the measure. Answer the associated question.

	Triangle 1	Triangle 2	Questions		
1)	$\frac{AB}{DF} = $	$\frac{AC}{DE} =$	How do the two ratios compare?		
	b) ∠ <i>CAB</i> =	∠EDF =	What do you notice about the two angles? (∠CAB and ∠EDF)		
Click	Click on the point C and move it. Fill in the new values.				
2)	$\frac{AB}{DF} =$	$\frac{AC}{DE} = $	How do the two ratios compare?		
	b) ∠ <i>CAB</i> =	∠EDF =	What do you notice about the two angles? (∠CAB and ∠EDF)		

Name:		
Class/Block:	Date:	

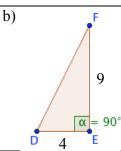
Move the slider so h is equal to 2.

Fill in the new values.

D	e	aı	re	e	of	si	mi	ila	rity
_	٠,	9		٠.	٠.	31		щ	,

h = 2

3)	a)		How do the two ratios compare now?
	$\frac{AB}{DF} =$	$\frac{AC}{DE} =$	
	b)		What do you notice about the two angles? (∠CAB and ∠EDF)
	$\angle CAB =$	∠ <i>EDF</i> =	
	$\frac{c)}{AC} =$	\overline{DE} =	What do you notice about the lengths of \overline{AC} and \overline{DE} ? How do they compare?


Move the slider so h is equal to 3.

Fill in the new values.

4)	$\frac{AB}{DF} =$	$\frac{AC}{DE} =$	How do the two ratios compare now?
	b) ∠ <i>CAB</i> =	∠EDF =	What do you notice about the two angles? (∠CAB and ∠EDF)
	$\frac{c)}{AC} =$	$\overline{DE} =$	What do you notice about the lengths of \overline{AC} and \overline{DE} ? How do they compare?

5) Look at the following pairs of triangles. Using you experience above, determine if these triangles are similar:

a) $\frac{c}{a} = 90^{\circ}$

Are they similar or not? Explain how you know.